Ch4. Counterfactuals and Their Applications

Judea Pearl et al.
Presenter: 이종진
Seoul National University
ga0408@snu.ac.kr
January 31, 2020

Table of Contents

1. Defining and Computing Counterfactuals

2 .Practical Uses of Counterfactuals

Defining and Computing Counterfactuals

Counterfactuals

- Took the road A, 1 hour driving time.
- "I should have taken the road B ".
- To emphasize our wish to compare two outcomes under exact same conditions.

Notation

- Using do-expression,

$$
E(\text { driving time }) \text { do }(\text { Take } B) \text {, driving time }=1)
$$

- leads to clash between the hypothetic driving time and actual driving time.
- Denote hypothetical driving time with subscripts.
- $Y_{X=1}\left(\right.$ or $\left.Y_{1}\right), Y_{X=0}\left(\right.$ or $\left.Y_{0}\right)$
- We wish to estimate

$$
E\left(Y_{X=1} \mid X=0, Y=Y_{0}=1\right)
$$

Do-expression vs Counterfactual

- Invention queries / retrospective counterfactual queries.
- $E[Y \mid \operatorname{do}(X=x)]=E\left[Y_{x}\right]$
- Population level analysis / Individual level analysis

Defining and computing counterfactuals (in determistic)

- A simple causal model consisting of just three variables, $\mathrm{X}, \mathrm{Y}, \mathrm{U}$.
- U can be interpreted as individual or situation
- Model M,

$$
\begin{aligned}
& X=a U \\
& Y=b X+U
\end{aligned}
$$

- Model M_{x},

$$
\begin{aligned}
& X=x \\
& Y=b X+U
\end{aligned}
$$

- Compute the counterfactual $Y_{x}(U)$
- "Y would be y had X been x , in situation $\mathrm{U}=\mathrm{u}$ "
- $\mathrm{a}=\mathrm{b}=1$, Observe $\mathrm{X}=2, \mathrm{Y}=4$. Compute $E\left(Y_{2} \mid X=2, Y=4\right)$
- $4=1 * 2+u, Y_{2}(u)=1 * 2+u=4$

Table 4.1 The values attained by $X(u), Y(u), Y_{x}(u)$, and $X_{y}(u)$ in the linear model of Eqs. (4.3) and (4.4)

u	$X(u)$	$Y(u)$	$Y_{1}(u)$	$Y_{2}(u)$	$Y_{3}(u)$	$X_{1}(u)$	$X_{2}(u)$	$X_{3}(u)$
1	1	2	2	3	4	1	1	1
2	2	4	3	4	5	2	2	2
3	3	6	4	5	6	3	3	3

- The do-operatior captures the behavior of a population under intervention, whereas $Y_{x}(u)$ describes the behavior of a specific individual, $U=u$, under such intervention.

The fundamental Law of Counterfacuals

- $Y_{x}(u)=Y_{M_{x}}(u)$
- $Y_{x}(u)$ is defined as the solution for Y in the "Surgically modified", submodel M_{x}
- Consistency rule

$$
\text { if } X=x \text {, then } Y_{x}=y
$$

- $E\left[Y_{x} \mid X=x\right]=E[Y \mid X=x]$

The Three Steps in Computing Counterfactuals(determistic)

- Three-step process for computing any deterministic counterfactual:

1. Abduction: Use evidence $E=e$ to determine the value of U
2. Action: Modify the model, M , by removing the structural equations for the variables in X and replacing them with the appropriate functions $\mathrm{X}=\mathrm{x}$, to obtain the modified model, M_{X}
3. Prediction: Use the modified model, M_{x}, and the value of U to compute the value of Y , the consequence of the counterfactual.

Probability of Counterfactuals

- By assigning probabilities $\mathrm{P}(\mathrm{U}=\mathrm{u})$ over the exogenous variables U , we can compute probability of counterfactuals.
- In same example, $P(U=1)=\frac{1}{2}, P(U=2)=\frac{1}{3}, P(U=3)=\frac{1}{6}$
- $P\left(Y_{2}=4\right)=P\left(u: Y_{2}(u)=3\right)=\frac{1}{2}$
- $P\left(Y_{2}>3, Y_{1}<4\right)=\frac{1}{3}, P\left(Y_{1}<4, Y-X>1\right)=\frac{1}{3}$
- $\left.P\left(Y_{3}>Y\right) \mid Y>2\right)=\frac{1}{3} / \frac{1}{2}=\frac{2}{3}$
- We can find joint probability of two events occuring in two different words.

The Three Steps in Computing Counterfactuals(nondetermistic)

- Three-step process to any probabilistic nonlinear system.

1. Abduction: Update $P(U)$ by the evience to obtain $P(U \mid E=e)$
2. Action: Modify the model, M, by removing the structural equations for the variables in X and replacing them with the appropriate functions $\mathrm{X}=\mathrm{x}$, to obtain the modified model, M_{x}
3. Prediction: Use the modified model, M_{x}, and the updated probabilities over the U variables, $\mathrm{P}(\mathrm{U} \mid \mathrm{E}=\mathrm{e})$, to compute the expectation of Y , the consequence of the counterfactual.

Example

$$
\begin{aligned}
X & =U_{1} \\
Z & =a X+U_{2} \\
Y & =b Z
\end{aligned}
$$

- $X=1$: stand for having a college education
- $U_{2}=1$: for having professional experience
- Z: for the level of skill needed for a given job, Y for salary, mediator
- Y: Salary

Example

- $E\left[Y_{X=x} \mid Z=1\right]$ vs $E[Y \mid d o(X=1), Z=1]$
- The former is the expected salary of individual with skill level $Z=1$, had they received a college education.
- The latter is the expected salary of individuals who all finished college and have since acquired skill level $Z=1$
- The latter could be expressed as $P\left(Y_{X=1} \mid Z_{X=1}=1\right)$

Example

- U_{1}, U_{2} takes value 0 or 1

Table 4.2 The values attained by $X(u), Y(u), Z(u), Y_{0}(u), Y_{1}(u), Z_{0}(u)$, and $Z_{1}(u)$ in the model of Eq. (4.7)

$X=u_{1} Z=a X+u_{2} Y=b Z$								
u_{1}	u_{2}	$X(u)$	$Z(u)$	$Y(u)$	$Y_{0}(u)$	$Y_{1}(u)$	$Z_{0}(u)$	$Z_{1}(u)$
0	0	0	0	0	0	$a b$	0	a
0	1	0	1	b	b	$(a+1) b$	1	$a+1$
1	0	1	a	$a b$	0	$a b$	0	a
1	1	1	$a+1$	$(a+1) b$	b	$(a+1) b$	1	$a+1$

Example

$$
\begin{aligned}
& E\left[Y_{1} \mid Z=1\right]=(a+1) * b \\
& E\left[Y_{0} \mid Z=1\right]=b
\end{aligned}
$$

$$
E[Y \mid d o(X=1), Z=1]=b
$$

$$
E[Y \mid d o(X=0), Z=1]=b
$$

- $E\left[Y_{1}-Y_{0} \mid Z=1\right]=a b \neq 1$

Practical Uses of Counterfactuals

Effect of treatment on the treated

- ETT,

$$
E T T=E\left[Y_{1}-Y_{0} \mid X=1\right]
$$

- It can be estimable using observational data, when there exist variables which satisfy backdoor criterion.

Theorem 4.3.1
(Counterfactual Interpretation of Backdoor) If a set Z of variables satisfies the backdoor condition relative to (X, Y), then, for all x, the counterfactual Y_{x} is conditionally independent of X given Z

$$
P\left(Y_{x} \mid X, Z\right)=P\left(Y_{x} \mid Z\right)
$$

- Estimate the probabilities of counterfactuals from observational studies.

$$
\begin{aligned}
P\left(Y_{x}=y\right) & =\sum_{z} P\left(Y_{x}=y \mid Z=z\right) P(z) \\
& =\sum_{z} P\left(Y_{x}=y \mid Z=z, X=x\right) P(z) \\
& =\sum_{z} P(Y=y \mid Z=z, X=x) P(z)
\end{aligned}
$$

Recruiment to a Program

- Randomized experiment for figuring out the effect of job training
- Critics says those who self-enroll are more intelligent, more resourceful, ...
- $X=1$ represent training, $Y=1$ represent hiring.
- The quauntity that needs to evaluated: ETT,

$$
E T T=E\left[Y_{1}-Y_{0} \mid X=1\right]
$$

- In some situation, (a set Z of covariates which satisfies the backdoor criterion exist), It can be estimated.

Recruiment to a Program

- With modified adjustment formula :

$$
\begin{aligned}
E T T & =E\left[Y_{1}-Y_{0} \mid X=1\right] \\
& =E\left[Y_{1} \mid X=1\right]-E\left[Y_{0} \mid X=1\right] \\
& =E[Y \mid X=1]-\sum_{z} E[Y \mid X=0, Z=z] p(Z=z \mid X=1)
\end{aligned}
$$

- Another situation for permitting the identification of ETT occures,
- Both experimental and nonexperimental data are available, in the form of $P(Y=y \mid d o(X=x))$ and $P(X=x, Y=y)$
- Existence of intermediate variable which satisfies Front-door criterion

Attribution

- 'Probability of necessity'

$$
P N=P\left(Y_{0}=0 \mid X=1, Y=1\right)
$$

- 'Probability of sufficency'

$$
P S=P\left(Y_{1}=1 \mid X=0, Y=0\right)
$$

- If Y is monotonic relative to X and If $\mathrm{P}(\mathrm{y} \mid \mathrm{do}(\mathrm{x}))$ is identifiable(randomized or observed with backdoor...).

Theorem 4.5.2

If Y is monotonic relative to X, that is, $Y_{1}(u) \geq Y_{0}(u)$ for all u, then $P N$ is identifiable whenever the casual effect $P(y \mid d o(x))$ is identifiable, and

$$
P N=\frac{P(y)-p\left(y \mid \operatorname{do}\left(x^{\prime}\right)\right.}{P(x, y)}
$$

or, substituting $P(y)=P(y \mid x) P(x)+P\left(y \mid x^{\prime}\right)(1-P(x))$, we obtain

$$
P N=\frac{P(y \mid x)-P\left(y \mid x^{\prime}\right)}{P(y \mid x)}+\frac{P(y \mid x)-P\left(y \mid d o\left(x^{\prime}\right)\right)}{P(x, y)}
$$

Personal Decision Making

- Ms Jones receive treatment A and B for tumor, Ten years later, she is alive, and the tumor has not recurred.
- Mrs Smith, on the other hand, receive treatment B alone, her tumor recurred after a year.
- Randomized experiments show receiving treatment A and B is effective than receiving treatment A alone
- However, these were population results. Can we infer from them the specific cases of Ms Jones and Mrs Smith?

Personal Decision Making

- $X=1$ represent receive treatment A and $B, Y=1$ represent remission of treatment B .
- 'Atrribution'
- For Ms Jones, 'Probability of necessity'

$$
P N=P\left(Y_{0}=0 \mid X=1, Y=1\right)
$$

- For Mrs Smith, 'Probability of sufficency'

$$
P S=P\left(Y_{1}=1 \mid X=0, Y=0\right)
$$

- 'Probalbility of necessity and sufficency'

$$
P N S=P\left(Y_{1}=1, Y_{0}=0\right)
$$

Personal Decision Making

- 'Probalbility of necessity and sufficency'

$$
P N S=P\left(Y_{1}=1, Y_{0}=0\right)
$$

- PNS can be measured if we assume monotonicity.
- Under monotonicity,

$$
P N S=P(Y=1 \mid d o(X=1))-P(Y=1 \mid d o(X=0))
$$

- Such quantification of individual risk is extremely important in personal decision making.

END

